

www.astesj.com 248

Using Naming Patterns for Identifying Architectural Technical Debt

Paul Mendoza del Carpio*

Research Professor, Department of Software Engineering, Universidad La Salle, Peru

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 10 December, 2016
Accepted: 18 January, 2017
Online: 28 January, 2017

 Hasty software development can produce immediate implementations with source code
unnecessarily complex and hardly readable. These small kinds of software decay generate
a technical debt that could be big enough to seriously affect future maintenance activities.
This work presents an analysis technique for identifying architectural technical debt related
to non-uniformity of naming patterns; the technique is based on term frequency over
package hierarchies. The proposal has been evaluated on projects of two popular
organizations, Apache and Eclipse. The results have shown that most of the projects have
frequent occurrences of the proposed naming patterns, and using a graph model and
aggregated data could enable the elaboration of simple queries for debt identification. The
technique has features that favor its applicability on emergent architectures and agile
software development.

Keywords:
Architectural technical debt
Naming pattern
Code analysis

1. Introduction

This paper is an extension of work originally presented in the
8th Euro American Conference on Telematics and Information
Systems (EATIS) [38]. Taking an easy solution on short-term in
an activity of any phase of software development (i.e.,
requirements, design, implementation), can generate an
accumulated technical debt, which, in a given period of time, can
become big enough to affect future deliveries, making hard getting
a successful outcome [6,24,37]. The debt comprises any aspect
known as inappropiate which has not been addressed in due time
(e.g., complex source code that needs refactoring) [24]. This debt
is a topic whose interest has been increased over the years [36].
Frequently the technical debt, when is inserted, is less visible for
decision makers in the software development [5]. The
development of techniques for identifying and monitoring
incidences of technical debt, is important for making explicit the
debt and it could be resolved in due time [3,11,22,24,35,37].

The technical debt can be inserted by not complying the
architectural design, or by not using conventions or standards of
programming [35]. Including this as a decision factor inside the
software development, requires information about the incidences
of technical debt in the software system, where these are located,

and their magnitude; such information can be gotten through
source code analysis [5].

The objective of this work is to present:

1. An analysis technique for identifying architectural
technical debt by non-uniformity of patterns.

2. A set of naming patterns across the package hierarchy of
the software system.

2. Architectural Technical Debt (ATD)

ATD is a kind of technical debt which comprises sub-optimal
solutions regarding internal or external quality attributes defined
in the intended architecture, mainly compromising the attributes of
maintainability and evolvability [2,11].

Changes related to design qualities but not related directly to
external behavior of the system, are frequently postponed or
neglected to reduce delivery time of the software system [3],
increasing the incidences of ATD.

ATD is a debt very related to source code [24], however, in
practice, is hard to be identified because this does not provide
observable behavior to final users [11,36], and can change with
time due to information gotten from implementation details [2].
Therefore, the ATD cannot be completely identified at an initial
stage [2].

ASTESJ

ISSN: 2415-6698

*Corresponding Author: p.mendozadc@ulasalle.edu.pe

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 248-254 (2017)

www.astesj.com

Special Issue on Computer Systems, Information Technology, Electrical and Electronics
Engineering

https://dx.doi.org/10.25046/aj020130

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj020130

P. Mendoza del Carpio / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 248-254 (2017)

www.astesj.com 249

In [2], a set of ATD is introduced. Among them, ATD by non-
uniformity of patterns is related to name conventions applied in
part of the system which are not followed in another parts [2]. This
instance of ATD is addressed in this work.

Furthermore, several agile approaches consider the
architecture as an emergent feature where there is no early design;
but the source code is refactored and the architectural elements are
refined [21]. The refactoring is a regular practice used in agile
approaches, and is often applied on source code [1]; this
contributes to the emergence of a successful architecture,
improving the internal structure of the application, making the
architectural elements more comprehensible, and avoiding the
architecture decay, specially in them defined slightly [15,21].
Performing an incomplete refactoring is a cause of ATD that can
insert part of ATD and generates new debt [2]. The refactoring can
be performed manually, or semi or fully automatic. The fully
automatic approach carry out the identification and transformation
of code elements, nevertheless a human commits modifications
[1,16]. This work enables a fully automatic refactoring, taking into
account the identification by the proposed analysis, and applying a
transformation through a renaming of classes. The last is a kind of
global refactoring (i.e., affects classes in more than one package)
[10] with API level (Application Programming Interface) [30],
which is often used automatically in programming environments
[8,30] with aims of organization and conceptualization [25],
standing out over other refactoring forms by supporting the
software traceability [1].

3. Naming Patterns

As a software evolves, its code becomes a source of
information that is up to date and contains relevant information
about the application domain [14]. Complex code is a major source
of technical debt [22]; the correct use of naming conventions
defined by the architecture accelerates and makes easy the
activities of software comprehension [34]. Nevertheless, these
conventions could not be followed throughout the software system.
Such phenomenon can be amplified in agile teams [2]; where the
teams are empowered in terms of design, different development
teams working in parallel accumulates differences in design and
architecture, and naming policies are not always defined explicitly
and formally, arising divergences and requiring effort [2].

The relevance of class names lies in determining the code
legibility, portability, maintainability, and accessibility to new
team members, and relating the source code to the problem domain
[19]. Also, industry experts highlight the importance of identifier
names in software [12,28,31]. Therefore, such importance can
reach architectural analysis levels, where identifying component
terms is a task less complicated when identifiers are comprised by
complete words or meaning acronyms [9,14]. The following
subsections present a set of naming patterns inspired on the
organization of source code through packages; the patterns are
defined taking into account the frequent use of terms in class
names inside the subjacent package hierarchy. Examples are taken
from several real projects of the organizations Apache and Eclipse.

3.1. Pattern: Package

In this pattern the term is often used by classes included in a
same package. As an example, figure 1 shows packages of Apache
MyFaces. f is defined as a value of minimal frequency; T is the set
of terms used in class names; P is the set of packages; C(p) is the
set of classes of p ∈ P; and C(p,t) is the set of classes of p which

have names with the term t ∈ T. The terms t of this pattern are such
that (| C(p,t) | / | C(p) |) ≥ f, and | C(p) | > 2.

org

apache

myfaces

HtmlButtonRenderer
HtmlImageRenderer
HtmlTableRenderer

renderkit

html

Figure 1: Example of Pattern Package

3.2. Pattern: Package Name

The term is often used by classes included in packages with
same name. Figure 3 shows packages of Eclipse EGit. M is defined
as the set of names of packages; F(m) is the set of packages with
name m ∈ M; and F(m,t) is the set of packages with name m which
contain classes having the term t in their names. The terms t of this
pattern are such that (| F(m,t) | / | F(m) |) ≥ f, and | F(m) | > 2.

org

eclipse

egit

commit

ui

command

internal

RevertHandler MergeHandler

repository

command
RepositoriesViewCommand

Handler

history

command tree

Figure 2: Example of Pattern Package Name

3.3. Pattern: Package Name and Level

The term is often used by classes included in packages with
same name at same level of the package hierarchy. As an example,
figure 3 shows packages of Apache Hadoop. N is defined as the
set of package levels; G(n,m) is the set of packages with name m
which are located at level n ∈ N; and G(n,m,t) is the set of packages
with name m, at level n, which contain classes having the term t in
their names. The terms t of this pattern are such that (| G(n,m,t) | /
| G(n,m) |) ≥ f, and | G(n,m) | > 2.

3.4. Pattern: Package immediately superior

The term is often used by classes included in packages that are
located in the same superior package. Figure 5 shows packages of
Eclipse BPMN2. H(p) is defined as the set of packages located in
package p ∈ P; and H(p,t) is the set of packages located in p which
contain classes using the term t in their names. The terms t of this
pattern are such that (| H(p,t) | / | H(p) |) ≥ f, and | H(p) | > 2.

http://www.astesj.com/

P. Mendoza del Carpio / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 248-254 (2017)

www.astesj.com 250

4. Analysis Procedure

The analysis procedure performs the following steps: reading
of packages and classes; creation of a graph of packages and
classes; creation of a graph of terms with aggregated nodes; and
querying of frequent terms and their frequency in the graph. The
following subsections provide major detail about the relevant
features.

org

apache

hadoop

mapreduce

AppController HsController AHSController

yarn

server

app

v2

hs

webapp

applicationhistoryservice

webapp webapp

Figure 3: Example of Pattern Package Name and Level

org

eclipse

bpmn2

event

modeler

StartEventFeature
Container

AssociationFeature
Container

lane
LaneFeature

Container

flow

ui

features

Figure 4: Pattern Package Immediately Superior

4.1. Graph based storage

The gotten terms are stored in a graph based database, such
model was chosen due to its visualization capabilities, its ease of
adding labels to nodes and creating nodes with aggregated data.

CQL (i.e.; Code Query Language) has been developed to
perform exhaustive analysis on source code [27]. However,
querying the source code directly without aggregating data, could
affects response time. In this work, the graph query language is
used as CQL with aims of taking the most of the database query
mechanisms, which are developed to manage considerable
amounts of data, and visualizing the results graphically. Moreover,
having a graph enables software architects to query and visualize
the data for purposes beyond this work.

4.2. Analysis of Term Frequency

The procedure of identifying frequent terms uses an analysis
based on term frequency with collection range [32], frequency
related to the number of times that a term occurs in a collection
(e.g.; names of classes organized in packages). The frequency is
computed by taking the percentage of term occurrences in same
package (pattern Package) or in several packages. For each

occurrence, the term position inside the name is considered (e.g.,
for ClientProtocol, the term Protocol is located in the second
position).

The creation of the graph of terms is performed querying the
names of classes and storing the occurrence of terms. The new
nodes are created aggregating the number of occurrences for each
naming pattern: by package, by package name, by package name
and level, and by package immediately superior (these nodes will
be denominated “aggregated nodes”); such data aggregation
enables the simplification of graph queries. Then, aggregated
nodes are labeled as frequent terms when they reach a minimal
frequency.

5. Results

This work can be considered a valid proposal for ATD, because
it corresponds to ATD by non-uniformity of patterns [2], and it
takes into account a debt that affects maintainability and
evolvability of software, without been included in not accepted
topics as technical debt [37]. The approach of this proposal gives
relevance to class names, and these determines the maintainability
and legibility of software, between others [4,7,18,28,29,33,34].
Looking at the standard ISO/IEC FDIS 25010, maintainability
includes the following quality attributes: modularity, reusability,
analyzability, modifiability and testability. Considering that
identifying components is less complicated task when the
identifiers are comprised by significant terms [9,14], the presented
analysis can support the analyzability and modifiability, getting
significant terms by their frequent use (been representatives).
Furthermore, if the naming patterns are not found in a software
implementation, it could evidence poor choices of design and
implementation with regard to used terms, affecting the test case
artifacts [17]; in this sense, the analysis can also support the
testability.

Table 1 shows some data about the projects considered
henceforth: LOC (lines of code), QF (quantity of files), QP
(quantity of packages), and QT (quantity of terms).

For evaluating the proposed analysis technique, an application
was implemented to getting the terms used in class name following
the CamelCase coding style (predominant style due to its ease of
writing and adoption [7,13]), storing terms in a Neo4j database
(standard graph database in the industry [26]). The application was
executed on twenty projects of the organizations Apache and
Eclipse (see table 1). All the source code was gotten from the
repositories of Apache and Eclipse in GitHub
(https://github.com/). Some project names were simplified to be
shown; their names in GitHub are: eclipselink.runtime,
hudson.core, scout.rt, servicemix-components.

This evaluation employs a minimal frequency of 0.8 to find
frequent terms. Tables 2, 3, 4, and 5 show the following data for
patterns 1, 2, 3, 4 (i.e., their order in section Naming Patterns)
respectively: N (quantity of frequent terms), Min (minimal
frequency found in frequent terms), Max (maximal frequency
found), Avg (average frecuency), Stdv (standard deviation of
frequency), TN (quantity of terms with a frequency lesser than 1).

Pattern Package is the most used pattern in the set; and Pattern
Package Name and Level is the most restrictive and less used. The
quantity of projects which does not have occurrences for any
pattern is very low. In general, the frequent terms complies some
pattern in more than ninety percent of their occurrences (i.e.;
average value of 0.9), having cases with one hundred percent.

http://www.astesj.com/

P. Mendoza del Carpio / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 248-254 (2017)

www.astesj.com 251

Table 1: Evaluated projects

 Proyecto LOC CA CP CT
A

pa
ch

e

JMeter 156900 842 102 526

Hadoop 860382 4246 404 1403

MyFaces 161973 816 76 419

Camel 543222 4070 518 1172

OpenJPA 324139 1385 54 619

Wicket 288225 1814 277 804

ActiveMQ 315613 2122 151 656

OpenEJB 432266 2758 204 1050

Geronimo 133804 1087 120 621

ServiceMix 91837 621 132 314

Ec
lip

se

Birt 1883941 7743 746 1384

Egit 137718 775 78 402

BPMN2 190873 1109 96 408

Scout 415805 3021 691 812

Xtext 396344 2699 360 1011

OSEE 593489 6141 815 1496

EclipseLink 890456 3643 324 994

Hudson 146540 904 83 687

EMF 478261 1228 179 475

Jetty 259521 1315 151 639

TN values show the quantity of ATD incidences by non-
uniformity of patterns. The percentage of TN in N shows the
percentage of frequent terms, which were not applied uniformly.
The maximal accepted value for this percentage can be defined by
the development team, in accordance with the degree of use of
naming conventions and how well defined is the architecture.

With aims to show the simplicity of queries, figure 6 shows the
following query in Cypher language, which gets frequent terms
with their respective packages for the pattern Package.

MATCH(t:FrequentTerm:PPackage),

(p:Package {fullName:t.packageFullName}) RETURN t,p

Code conventions can often be expressed as common practices
which follows certain consensus before than as imposed rules [19].
The proposed analysis enables identifying a consensus of terms in
following the naming patterns. Taking into account that refactoring
can insert poor choices of design and implementation, evidencing
such emergent consensus in the source code is useful before
performing refactoring [2,19].

Table 6 shows some frequent terms which can be highlighted
by their matching with concepts used in popular designs and
architectures; showing that is possible to getting emergent and
significant concepts from names of source code artifacts. The
following query gets the TN terms for all naming patterns.

MATCH (t:FrequentTerm) WHERE t.percentage < 1

RETURN DISTINCT t.term

Table 2: Frequency of terms for Pattern Package

Proyecto N Min Max Avg Stdv TN
JMeter 15 0.8 1 0.930 0.086 9

Hadoop 72 0.8 1 0.972 0.057 25

MyFaces 17 0.8 1 0.956 0.068 8

Camel 188 0.8 1 0.970 0.062 51

OpenJPA 9 0.8 1 0.914 0.096 5

Wicket 54 0.8 1 0.941 0.082 25

ActiveMQ 34 0.8 1 0.959 0.065 13

OpenEJB 28 0.8 1 0.942 0.077 12

Geronimo 16 0.8 1 0.921 0.078 9

ServiceMix 31 0.8 1 0.960 0.077 10

Birt 90 0.8 1 0.946 0.074 51

EGit 11 0.8 1 0.933 0.080 7

BPMN2 21 0.8 1 0.909 0.079 18

Scout 71 0.8 1 0.945 0.083 26

Xtext 36 0.8 1 0.951 0.074 16

OSEE 125 0.8 1 0.937 0.079 70

EclipseLink 71 0.8 1 0.958 0.066 32

Hudson 18 0.8 1 0.981 0.056 2

EMF 35 0.8 1 0.946 0.075 23

Jetty 34 0.8 1 0.954 0.071 13

Similar works to this proposal were searched in the following
digital libraries: ACM, IEEE Xplore and ScienceDirect; the search
queries are shown.

For ACM:

recordAbstract:(+"technical debt" name names naming identifier
identifiers)

For IEEE Xplore:

("Abstract":technical debt) AND ("Abstract":name OR
"Abstract":names OR "Abstract":naming OR "Abstract":identifier
OR "Abstract":identifiers)

For ScienceDirect:

ABS("technical debt") AND (ABS(name) OR ABS(names) OR
ABS(naming) OR ABS(identifier) OR ABS(identifiers))

The quantities of gotten results for ACM, IEEE Xplore and
ScienceDirect are 64, 0, and 1, respectively. The result gotten in
ScienceDirect is a book chapter about refactoring advices. Many
of the results from ACM are studies about the scope, causes,
impact, and features of the technical debt; a few results are slightly
related to this work, they address static analysis of source code at
a low level, inspecting the source code content (i.e., operations and
code sentences). Consequently, it can be affirmed that there is not
similar proposals to this work, which is focused in naming of
source code artifacts.

http://www.astesj.com/

P. Mendoza del Carpio / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 248-254 (2017)

www.astesj.com 252

Table 3: Frequency of terms for Pattern Package Name

Proyecto N Min Max Avg Stdv TN
JMeter 2 0.938 1 0.969 0.044 1
Hadoop 34 0.800 1 0.965 0.073 7
MyFaces 2 1.000 1 1.000 0.000 0
Camel 21 0.800 1 0.949 0.085 8
OpenJPA 6 1.000 1 1.000 0.000 0
Wicket 9 1.000 1 1.000 0.000 0
ActiveMQ 1 1.000 1 1.000 0.000 0
OpenEJB 1 0.800 1 0.900 0.141 1
Geronimo 0 0.000 0 0.000 0.000 0
ServiceMix 10 0.800 1 0.911 0.090 5
Birt 34 0.800 1 0.951 0.081 11
EGit 5 0.800 1 0.960 0.089 1
BPMN2 3 1.000 1 1.000 0.000 0
Scout 59 0.800 1 0.935 0.089 26
Xtext 10 0.833 1 0.933 0.086 4
OSEE 41 0.800 1 0.963 0.072 10
EclipseLink 17 0.800 1 0.980 0.060 2
Hudson 1 1.000 1 1.000 0.000 0
EMF 17 0.857 1 0.960 0.056 7
Jetty 4 0.889 1 0.944 0.064 2

Table 4: Frequency of terms for Pattern Package Name and Level

Proyecto N Min Max Avg Stdv TN
JMeter 2 0.857 1 0.952 0.082 1
Hadoop 17 0.800 1 0.945 0.082 6
MyFaces 0 0.000 0 0.000 0.000 0
Camel 18 0.833 1 0.991 0.038 1
OpenJPA 0 0.000 0 0.000 0.000 0
Wicket 2 1.000 1 1.000 0.000 0
ActiveMQ 0 0.000 0 0.000 0.000 0
OpenEJB 0 0.000 0 0.000 0.000 0
Geronimo 0 0.000 0 0.000 0.000 0
ServiceMix 9 0.875 1 0.963 0.060 2
Birt 18 0.833 1 0.995 0.029 1
EGit 5 1.000 1 1.000 0.000 0
BPMN2 2 1.000 1 1.000 0.000 0
Scout 63 0.800 1 0.977 0.063 8
Xtext 2 0.800 0.8 0.800 0.000 2
OSEE 20 0.800 1 0.974 0.069 3
EclipseLink 1 1.000 1 1.000 0.000 0
Hudson 1 1.000 1 1.000 0.000 0
EMF 17 0.833 1 0.967 0.063 6
Jetty 4 1.000 1 1.000 0.000 0

Table 5: Frequency of terms for Pattern Immediate Superior

Proyecto N Min Max Avg Stdv TN
JMeter 3 1.000 1 1.000 0.000 0
Hadoop 6 0.800 1 0.967 0.082 1
MyFaces 0 0.000 0 0.000 0.000 0
Camel 26 0.800 1 0.954 0.075 10
OpenJPA 0 0.000 0 0.000 0.000 0
Wicket 2 0.896 1 0.965 0.060 1
ActiveMQ 60 0.800 1 0.915 0.037 57
OpenEJB 2 0.875 0.889 0.882 0.008 2
Geronimo 3 0.857 1 0.952 0.082 1
ServiceMix 6 0.906 1 0.974 0.042 2
Birt 41 0.800 1 0.974 0.059 8
EGit 1 1.000 1 1.000 0.000 0
BPMN2 5 0.800 1 0.922 0.078 4
Scout 20 0.800 1 0.950 0.075 9
Xtext 7 0.800 1 0.919 0.089 4
OSEE 29 0.800 1 0.952 0.084 9
EclipseLink 33 0.800 1 0.977 0.062 7
Hudson 0 0.000 0 0.000 0.000 0
EMF 16 0.800 1 0.947 0.085 3
Jetty 5 0.833 1 0.900 0.091 3

Table 6: Frequent terms

Proyecto Términos
JMeter Controller, Converter, Editor, Gui, JDBC, Meter.
Hadoop Chain, Client, Container, Event, Scheduler.
MyFaces Handler, Html, Impl, Implicit, Renderer, Tag.
Camel Bean, Cache, Command, Filter, Task, Yammer.
OpenJPA Concurrent, Distributed, Identifier, Managed.
Wicket Bean, Checker, Handler, Resolver, Socket.
ActiveMQ Adapter, Bridge, Broker, Command, Factory.
OpenEJB Binding, Command, Entity, Factory, Thread.
Geronimo Command, Deployment, Manager, Validation.
ServiceMix Component, Factory, Filter, Interceptor, Ws
Birt Action, Adapter, Filter, Handler, Validator.
EGit Blame, Command, Git, Handler, Index, Node
BPMN2 Adapter, Editor, Event, Flow, Task, Validator.
Scout Activity, Browser, Inspector, Job, Page, Service,
Xtext Facet, Fragment, Module, Page, Resource, Ui
OSEE Action, Command, Client, Service, Word.
EclipseLink Accesor, Converter, Query, Resource, Table.
Hudson Team, X
EMF Action, Adapter, Command, Factory, Model.
Jetty Bean, M, Response, Socket, Web

http://www.astesj.com/

P. Mendoza del Carpio / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 248-254 (2017)

www.astesj.com 253

6. Conclusions

The naming patterns presented frequent ccurrences in several
projects of the organizations Apache and Eclipse, showing that
most of the frequent terms complies each pattern by ninety percent
of their occurrences.

The proposed analysis identifies architectural technical debt by
non-uniformity of naming patterns; which are applied frequently,
but not followed in all the system. The used approach, based on
naming patterns of source code artifacts, differs from other
approaches which uses the source code content (e.g.; operations,
sentences) for identifying technical debt.

The use of a graph based database was relevant, to enable using
the database query capabilities as CQL, avoiding the limitations
that could present a conventional CQL tool [27]; performing data
aggregation in new nodes and making easy the elaboration of
queries, which could be more complex or hard to be defined with
a conventional CQL.

The proposal is applicable under an agile approach, which
promotes focusing on product features and taking care about
uncertainty in respect of ATD [2]. The analysis performed on
source code does not require an architecture specification as input,
and could be automatic through the continuous execution of
queries during the software development, enabling the tracking of
ATD. Additionally, the frequent terms, which were discovered,
can be useful for identifying new emergent concepts in the
software architecture.

References

[1] A. Mahmoud, N. Niu, “Supporting requirements to code traceability through
refactoring”, Requir. Eng., 19(3), 309-329, 2014.

[2] A. Martini, J. Bosch, M. Chaudron. “Investigating Architectural Technical
Debt accumulation and refactoring over time”, Inf. Softw. Technol. 67, 237-
253, 2015.

[3] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou, “The
financial aspect of managing technical debt”, Inf. Softw. Technol. 64, 52-73,
2015.

[4] B. Liblit, A. Begel, E. Sweetser, “Cognitive perspectives on the role of
naming in computer programs” in Proceedings of the 18th Annual Psychology
of Programming Workshop, 2006.

[5] C. Seaman, Y. Guo, C. Izurieta, Y. Cai, N. Zazworka, F. Shull, A. Vetrò,
”Using technical debt data in decision making: potential decision approaches”
in Proceedings of the Third International Workshop on Managing Technical
Debt (MTD '12), IEEE Press, Piscataway, NJ, USA, 45-48, 2012.

[6] C. Sterling, Managing Software Debt: Building for Inevitable Change (1st
ed.), Addison-Wesley Professional, 2010.

[7] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, B. Sharif. “The
impact of identifier style on effort and comprehension”, Empirical Softw.
Engg. 18, 2 (April 2013), 219-276, 2013

[8] E. Murphy-Hill, C. Parnin, and A. P. Black, “How We Refactor, and How We
Know It”, IEEE Trans. Softw. Eng., 38(1), 5-18, 2012.

[9] F. Deissenboeck, M. Pizka, “Concise and Consistent Naming” in Proceedings
of the 13th International Workshop on Program Comprehension (IWPC '05),
IEEE Computer Society, Washington, DC, USA, 97-106, 2005.

[10] G. Soares, R. Gheyi, E. Murphy-Hill, B. Johnson, “Comparing approaches to
analyze refactoring activity on software repositories”, J. Syst. Softw. 86(4),
1006-1022, 2013.

[11] I. Mistrik, R. Bahsoon, R. Kazman, Y. Zhang, Economics-Driven Software
Architecture (1st ed.), Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2014.

[12] K. Beck, Implementation patterns, Addison Wesley, 2008.

[13] L. Guerrouj, “Normalizing source code vocabulary to support program
comprehension and software quality”, in Proceedings of the 2013
International Conference on Software Engineering (ICSE '13), IEEE Press,
Piscataway, NJ, USA, 1385-1388, 2013.

[14] L. Guerrouj, M. Penta, Y. Guéhéneuc, G. Antoniol, “An experimental
investigation on the effects of context on source code identifiers splitting and
expansion”, Empirical Softw. Engg., 19(6), 1706-1753, 2014.

[15] L. Chen, M. Ali Babar, “Towards an Evidence-Based Understanding of
Emergence of Architecture through Continuous Refactoring in Agile
Software Development” in Proceedings of the 2014 IEEE/IFIP Conference on
Software Architecture (WICSA '14), IEEE Computer Society, Washington,
DC, USA, 195-204, 2014

[16] M. Katić, K. Fertalj, “Towards an appropriate software refactoring tool
support” in Proceedings of the 9th WSEAS international conference on
Applied computer science (ACS'09), 2009.

[17] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, D.
Poshyvanyk, “When and why your code starts to smell bad”, in Proceedings
of the 37th International Conference on Software Engineering (ICSE '15),
Vol. 1, IEEE Press, Piscataway, NJ, USA, 403-414, 2015.

[18] M. Allamanis, E. T. Barr, C. Bird, C. Sutton, “Suggesting accurate method
and class names” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2015), ACM, New York,
NY, USA, 38-49, 2015.

[19] M. Allamanis, E. T. Barr, C. Bird, C. Sutton, “Learning natural coding
conventions”, in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2014), ACM,
New York, NY, USA, 281-293, 2014.

[20] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, R. E. Johnson,
“Use, disuse, and misuse of automated refactorings” in Proceedings of the
34th International Conference on Software Engineering (ICSE '12), IEEE
Press, Piscataway, NJ, USA, 233-243, 2012.

[21] M. A. Babar, A. W. Brown, and I. Mistrik, Agile Software Architecture:
Aligning Agile Processes and Software Architectures (1st ed.), Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2013.

[22] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, I. Gorton, “Measure it?
Manage it? Ignore it? software practitioners and technical debt” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015), ACM, New York, NY, USA, 50-60, 2015.

[23] N. Zazworka, M. A. Shaw, F. Shull, C. Seaman, “Investigating the impact of
design debt on software quality” in Proceedings of the 2nd Workshop on
Managing Technical Debt (MTD '11), ACM, New York, NY, USA, 17-23,
2011.

[24] N. Alves, T. Mendes, M. de Mendonça, R. Spínola, F. Shull, C. Seaman,
“Identification and management of technical debt: A systematic mapping
study”, Information and Software Technology, 70, 100-121, 2016.

[25] N. Tsantalis, V. Guana, E. Stroulia, A. Hindle, “A multidimensional empirical
study on refactoring activity” in Proceedings of the 2013 Conference of the
Center for Advanced Studies on Collaborative Research (CASCON '13), IBM
Corp., Riverton, NJ, USA, 132-146, 2013.

[26] P. Macko, D. Margo, M. Seltzer, “Performance introspection of graph
databases” in Proceedings of the 6th International Systems and Storage
Conference (SYSTOR '13), ACM, New York, NY, USA, 2013.

[27] R. Urma, A. Mycroft, “Programming language evolution via source code
query languages” in Proceedings of the ACM 4th annual workshop on
Evaluation and usability of programming languages and tools (PLATEAU
'12), ACM, New York, NY, USA, 35-38, 2012.

[28] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship (1
ed.), Prentice Hall PTR, Upper Saddle River, NJ, USA, 2008.

[29] S. Butler, M. Wermelinger, Y. Yu, H. Sharp, “Exploring the Influence of
Identifier Names on Code Quality: An Empirical Study, in Proceedings of the
2010 14th European Conference on Software Maintenance and Reengineering
(CSMR '10), IEEE Computer Society, Washington, DC, USA, 156-165, 2010.

[30] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, D. Dig, “A comparative
study of manual and automated refactorings” in Proceedings of the 27th
European conference on Object-Oriented Programming (ECOOP'13),
Springer-Verlag, Berlin, Heidelberg, 552-576, 2013.

http://www.astesj.com/

P. Mendoza del Carpio / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 248-254 (2017)

www.astesj.com 254

[31] S. McConnell, Code Complete, Second Edition, Microsoft Press, Redmond,
WA, USA, 2004.

[32] T. Roelleke, Information Retrieval Models: Foundations and Relationships
(1st ed.), Morgan & Claypool Publishers, 2013.

[33] V. Arnaoudova, M. Di Penta, G. Antoniol, “Linguistic antipatterns: What they
are and how developers perceive them”, Empirical Software Engineering, 1-
55, 2015.

[34] W. Maalej, R. Tiarks, T. Roehm, R. Koschke. 2014. On the Comprehension
of Program Comprehension, ACM Trans. Softw. Eng. Methodol., 23(4),
2014.

[35] Z. Codabux, B. J. Williams, N. Niu, in Proceedings of the International
Conference on Software Engineering Research and Practice (SERP'14), 2014.

[36] Z. Li, P. Liang, P. Avgeriou, N. Guelfi, A. Ampatzoglou, “An empirical
investigation of modularity metrics for indicating architectural technical debt”
in Proceedings of the 10th international ACM Sigsoft conference on Quality
of software architectures (QoSA '14), ACM, New York, NY, USA, 119-128,
2014.

[37] Z. Li, P. Avgeriou, P. Liang, “A systematic mapping study on technical debt
and its management”, J. Syst. Softw., 101, 193-220, 2015.

[38] P. Mendoza del Carpio, “Identification of architectural technical debt: An
analysis based on naming patterns”, in Proceedings of the 2016 8th Euro
American Conference on Telematics and Information Systems (EATIS),
IEEE Computer Society, Washington, DC, USA, 10, 2016.

http://www.astesj.com/

	2. Architectural Technical Debt (ATD)
	3. Naming Patterns
	3.1. Pattern: Package
	3.2. Pattern: Package Name
	3.3. Pattern: Package Name and Level
	3.4. Pattern: Package immediately superior

	4. Analysis Procedure
	4.1. Graph based storage
	4.2. Analysis of Term Frequency

	5. Results
	Table 3: Frequency of terms for Pattern Package Name
	6. Conclusions
	References

